
5/25/2019

1

July 19, 2019

Kiyoung Choi

Dept. ECE, NPRC

Seoul National Univ

1

Contents

Introduction1

2

3

4

Artificial Neural Network

Network Reduction

Zero Skipping

5 Low-Precision Computing

6 Computing in Analog

7 Conclusion

2

5/25/2019

2

Introduction

P.A. Merolla et al., “A million spiking-neuron integrated circuit with a

scalable communication network and interface,” Science, Aug. 2014.

Memory CPU

3

Artificial Neural Network

Conventional computing

 von Neumann architecture

 Accurate with full precision binary computing

 High cost in area and energy consumption

 Memory wall problem

Human brain

 Consumes ~20W power

 Does not perform precise computing

 Very well recognizes objects

Memory CPU

4

5/25/2019

3

Artificial Neural Network

 Neural network models & implementations

 Perceptron model

soma

axon

hillock

axon

dendrite

synapse

𝑦 = 𝑓 ෍

𝑖=1

𝑛

𝒘𝑇𝒙 + 𝑏

x1

S






*

x2 *
w2

xn

*
wn b

w1

Mostly MAC operations

5

 Neural network models & implementations
 Convolutional neural networks (CNNs)

Artificial Neural Network

x1

S






*

w1

x2 *
w2

xn

*
wn

y

A. Krizhevsky et al., "ImageNet classification with

deep convolutional neural networks, NIPS 2012.

b

6

5/25/2019

4

Artificial Neural Network

 Neural network models & implementations
 Convolutional neural networks (CNNs)

K. He et al., "Deep residual learning for

image recognition," CVPR 2016.

A. Krizhevsky et al., "ImageNet classification with

deep convolutional neural networks, NIPS 2012.

7

Artificial Neural Network

Deployments

Qualcomm Snapdragon 845 Huawei Kirin 970

Apple A11 Bionic

Google TPU 3.0

Samsung Exynos 9820

8

5/25/2019

5

Artificial Neural Network

P.A. Merolla et al., “A million spiking-neuron integrated circuit with a

scalable communication network and interface,” Science, Aug. 2014.

Memory CPU

Still inefficient

9

Artificial Neural Network

Near-data processing

 TETRIS

M. Gao et al., "TETRIS: scalable and efficient neural network acceleration with 3D memory," ASPLOS

2017.

10

5/25/2019

6

Network Reduction

 Weight pruning

 Y. Guo et al., “Dynamic network surgery for efficient dnns,”
NIPS 2016

 S. Han et al., “Learning both weights and connections for
efficient neural network,” NIPS 2015

 Filter pruning

 H. Hu et al., “ Network trimming: A data-driven neuron
pruning approach towards efficient deep architectures,”
arXiv:1607.03250, 2016.

 J.-H. Luo and J. Wu, “Autopruner: An end-to-end trainable
filter pruning method for efficient deep model inference,”
arXiv:1805.08941, 2018

 Knowledge distillation

 G. Hinton et al.’ “Distilling the knowledge in a neural net
work,” NIPS Workshop 2014

 J. Yoo et al., “Network recasting: a universal method for
network architecture transformation,” AAAI, 2019.

11

Network Reduction

Network recasting

 Layer-by-layer application of knowledge distillation

 Recasting into an arbitrary target block

J. Yoo et al., “Network recasting: a universal

method for network architecture transformation,”

AAAI, 2019.
Source Target

12

5/25/2019

7

Network Reduction

Filter-pruning effect

13

Network Reduction

Performance

 Much less memory access due to reduced activation

Comparison with previous works. (batch size is 64, NVIDIA Titan X (pascal))

14

5/25/2019

8

Zero Skipping

 Exploiting zeros in inputs

 J. Albericio et al., “Cnvlutin: ineffectual-neuron-free deep
neural network computing,” ISCA, 2016

 P. Judd et al., “Stripes: Bit-serial Deep Neural Network
Computing ,” Computer Architecture Letters, 2016

 D. Kim et al., “ZeNA: Zero-Aware Neural Network
Accelerator,” IEEE Design & Test, Feb. 2018

 Exploiting zeros in outputs

 V. Akhlaghi et al., “SnaPEA: Predictive Early Activation for
Reducing Computation in Deep Convolutional Neural
Networks,” ISCA 2018

 D. Lee et al., “ComPEND: computation pruning through early
negative detection,” ICS, 2018

 For training

 G. Lee et al., “Acceleration of DNN Backward Propagation by
Selective Computation of Gradients,” DAC 2019, to be
presented.

15

 ComPEND
 Computation Pruning through Early Negative Detection

 Motivation

 Perceptron model

 Rectified linear unit (ReLU, [f(x) = max(0,x)]) is widely used as an
activation function for DNN

 If we know a priori that x ≤ 0, we can skip unnecessary computations

Zero Skipping

16

f(x)

x

S
𝑥

𝐴𝑙−1

𝐴𝑙=f(x)
𝑊 𝑙

𝑥 =෍
𝑖=1

𝑁

𝐴𝑖 ×𝑊𝑖

D. Lee et al., “ComPEND: computation pruning through early negative detection,” ICS, June 2018.

=0

5/25/2019

9

Zero Skipping

 Early Negative Detection (END)

 Two’s complement number representation (4 bits)

17

0000 = -0+0 = +0

0001 = -0+1 = +1

0010

0011

0100

0101

0110

0111

1000 .

1001 .

1010 .

1011

1100 = -8+4 = -4

1101 = -8+5 = -3

1110 = -8+6 = -2

1111 = -8+7 = -1

𝑊 = 𝑤𝐵−1 × (−2𝐵−1) +෍
𝑘=0

𝐵−2

𝑤𝑘 × +2𝑘

Negative

Positive

For a B-bit number 𝑊 : (𝑤𝐵−1 𝑤𝐵−2 𝑤𝐵−3…𝑤1 𝑤0)

Zero Skipping

 Early Negative Detection (END)

 Inverted two’s complement number representation (4 bits)

18

0000 = +0-0 = -0

0001 = +0-1 = -1

0010

0011

0100

0101

0110

0111

1000 .

1001 .

1010 .

1011

1100 = +8-4 = +4

1101 = +8-5 = +3

1110 = +8-6 = +2

1111 = +8-7 = +1

𝑊 = 𝑤𝐵−1 × (+2𝐵−1) +෍
𝑘=0

𝐵−2

𝑤𝑘 × −2𝑘

Positive

Negative

For a B-bit number 𝑊 : (𝑤𝐵−1 𝑤𝐵−2 𝑤𝐵−3…𝑤1 𝑤0)

5/25/2019

10

Zero Skipping

 Early Negative Detection (END)

 Inverted two’s complement for negative detection

Weight:

ReLU

Decimal 2’s complement

Activation: 5

6-x
0- 3

)
10 0 1

01 1 0)x
00 0 0

10 0 1
00 0 0

10 0 1

+
+

+

-
11 0 0 0 1 01

0

19

Zero Skipping

 Early Negative Detection (END)

 Inverted two’s complement for negative detection

Weight:

ReLU

Decimal 2’s complement Inverted 2’s complement

Activation: 5

6-x

0- 3
)

10 0 1

01 1 0)x

00 0 0
10 0 1

00 0 0

10 0 1

+
+

+

-
11 0 0 0 1 01

10 0 1

10 1 0)x

00 0 0+

00 0 0 0 0 00

0

bit serial

20

5/25/2019

11

Zero Skipping

 Early Negative Detection (END)

 Inverted two’s complement for negative detection

Weight:

ReLU

Decimal 2’s complement Inverted 2’s complement

Activation: 5

6-x
0- 3

)
10 0 1

01 1 0)x
00 0 0

10 0 1
00 0 0

10 0 1

+
+

+

-
11 0 0 0 1 01

10 0 1

10 1 0)x

10 0 1-
00 0 0+

11 0 1 1 0 01

0

bit serial

21

Zero Skipping

 Early Negative Detection (END)

 Inverted two’s complement for negative detection

00 0 0-

10 0 1-

Weight:

ReLU

Decimal 2’s complement Inverted 2’s complement

Activation: 5

6-x

0- 3
)

10 0 1

01 1 0)x

00 0 0
10 0 1

00 0 0

10 0 1

+
+

+

-
11 0 0 0 1 01

10 0 1

10 1 0)x

10 0 1-
00 0 0+

11 0 1 1 0 01

0

Skipped!

bit serial

22

5/25/2019

12

Zero Skipping

23

 Early Negative Detection (END)

 Inverted two’s complement for negative detection

00 0 0-

10 0 1-

Weight:

ReLU

Decimal 2’s complement Inverted 2’s complement

Activation: 5

6-x
0- 3

)
10 0 1

01 1 0)x
00 0 0

10 0 1
00 0 0

10 0 1

+
+

+

-
11 0 0 0 1 01

10 0 1

10 1 0)x

10 0 1-
00 0 0+

11 0 1 1 0 01

0

Skipped!

steps

value

Positive sum Negative sum

bit serial

Zero Skipping

24

 Early Negative Detection (END)

 Inverted two’s complement for negative detection

00 0 0-

10 0 1-

Weight:

ReLU

Decimal 2’s complement Inverted 2’s complement

Activation: 5

6-x

0- 3
)

10 0 1

01 1 0)x

00 0 0
10 0 1

00 0 0

10 0 1

+
+

+

-
11 0 0 0 1 01

10 0 1

10 1 0)x

10 0 1-
00 0 0+

11 0 1 1 0 01

0

Skipped!

steps

value

Positive sum Negative sum

steps

value

bit serial

5/25/2019

13

Zero Skipping

25

 Early Negative Detection (END)

 Inverted two’s complement for negative detection

00 0 0-

10 0 1-

Weight:

ReLU

Decimal 2’s complement Inverted 2’s complement

Activation: 5

6-x
0- 3

)
10 0 1

01 1 0)x
00 0 0

10 0 1
00 0 0

10 0 1

+
+

+

-
11 0 0 0 1 01

10 0 1

10 1 0)x

10 0 1-
00 0 0+

11 0 1 1 0 01

0

Skipped!

steps

value

Positive sum Negative sum

steps

value

Stop here!

bit serial

Zero Skipping

 ComPEND architecture

PU

PU

PU

PU

PU

DRAM

STT-RAM

WB

WB

WB

P
ro

vi
d
er

 N
et

w
o
rk

AB AB AB

PU PU

PU PU

PU PU

PU PU

Global Controller

Memory
Controller

…

…

…

…

…

…

… … …

+

▪
▪

▪▪
▪

▪

▪ ▪

▪

Weight bits

In
p
u
t

ac
ti

v
at

io
n
s

16

1

26

5/25/2019

14

Zero Skipping

Comparison with other architectures

27

Eyeriss DaDianNao ComPEND
(w/o zero-skipping)

Precision 16 16 16

Technology 65 nm 28 nm 45 nm

Clock frequency 250 MHz 606 MHz 1000 MHz

Throughput 42 GMACS 2,790 GMACS 288 GMACS

Core Area 12.25 mm2 67.73 mm2 5.62 mm2

Area efficiency 3.43 GMACS/mm2 41.19 GMACS/mm2 51.25 GMACS/mm2

Power 450 mW 15,970 mW 1,180 mW

Power efficiency 93.3 GMACS/W 174.7 GMACS/W 244.1 GMACS/W

Zero Skipping

28

Runtime

 ComPEND reduces runtime by 16.62% on average

Left bars: without ComPEND

Right bars: with ComPEND

• MEM_STT: reads/writes between off-chip
memory and STT-RAM

• STT_WB: runtime of reads/writes between
STT-RAM and WB

• MEM_WB: reads/writes between off-chip
memory and WB

• MEM_AB: reads/writes between off-chip
memory and AB

• AB_PU: reads/writes between AB and
registers in PUs

• RUN_PU: computation in PUs

< for VGG-16 layers >

5/25/2019

15

Zero Skipping

29

Energy (dynamic & static) consumption

 ComPEND reduces energy by 23.50% on average

• D/S_CTRL: global controller

• D/S_NET: provider network

• D/S_STT: STT-RAM.

• D/S_AB: activation buffers

• D/S_WB: weight buffer

• D/S_PU: processing units

Left bars: without ComPEND

Right bars: with ComPEND
< for VGG-16 layers >

Zero Skipping

30

Zero skipping for training

 Skipping gradient computation on zero activation

 𝑎𝑜𝑢𝑡 = 𝑓ReLU 𝑎𝑖𝑛 = ቊ
𝑎𝑖𝑛 , 𝑎𝑖𝑛 > 0
0, 𝑎𝑖𝑛 ≤ 0

𝑎𝑜𝑢𝑡 = 0 ⇒
𝜕𝑎𝑜𝑢𝑡

𝜕𝑎𝑖𝑛
= 0

 In backward propagation
𝜕𝐸

𝜕𝑎𝑖𝑛
=

𝜕𝐸

𝜕𝑎𝑜𝑢𝑡
∙
𝜕𝑎𝑜𝑢𝑡

𝜕𝑎𝑖𝑛

No need to compute gradient 𝑔𝑎𝑜𝑢𝑡
𝑙 𝑥, 𝑦, 𝑧 , if 𝑎𝑜𝑢𝑡 = 0

𝑔𝑎𝑜𝑢𝑡
𝑙 𝑥, 𝑦, 𝑧 =

෍

𝑖=0

𝐹𝑥−1

෍

𝑗=0

𝐹𝑦−1

෍

𝑘=0

𝐹𝑛−1

𝑔𝑎
𝑙+1(𝑥 + 𝑖, 𝑦 + 𝑗, 𝑘) × 𝑤𝑙(𝑖, 𝑗, 𝑧, 𝑘)

saves 𝐹𝑥 × 𝐹𝑦 × 𝐹𝑛 MAC operations

0

S

𝑔𝑎
𝑜𝑢𝑡

𝑙 𝒘𝑖,∗
𝑘

backward

propagation

𝑔𝑎
𝑖𝑛

𝑙
𝑔𝑎

𝑖𝑛

𝑙+1

5/25/2019

16

Zero Skipping

31

Zero skipping for training

Low-Precision Computing

Inference

 8-bit

 Google TPU 1

 Binary

 Trade-off between precision and accuracy

Training

 Dynamic fixed-point

 Bengio

 DAL

 16-bit FP

 NVDIA: half-precision FP, 1-5-10, scaling

 Google: bfloat, 1-8-7

 8-bit

 IBM: stochastic rounding

 Intel: range batch normalization + bifurcation

32

5/25/2019

17

Still not efficient enough

Computing in Analog

P.A. Merolla et al., “A million spiking-neuron integrated circuit with a

scalable communication network and interface,” Science, Aug. 2014.

Memory CPU

33

Various ways of implementing neural
networks

Solutions in

between

Computing in Analog

Neural Network

Spiking

Non-von Neumann

Analog Digital General

Purpose

+

Accelerator

General

Purpose

ASIC FPGA GPU

Mixed

Memory CPU

von Neumann

Non-spiking

Non-von Neumann von Neumann

34

5/25/2019

18

Computing in Analog

BNN (Binarized Neural Network)

 MAC operations in analog

+…

W1

W2

Wj

x1

x2

xj

sign(u) +1 or 0X

+1 or -1

1

bias (8~32 bits)

BN

Multiplication & addition
(8~32 bits)

+1 or -1

35

Computing in Analog

Accuracy

Network W Act CIFAR-10
ACC

(4 conv, 2 fc)

CIFAR-10
ACC

(6 conv, 3 fc)

DNN
(baseline)

Float32 Float32 85.60% 91.11%

BWN 1-bit (1, -1) Float32 84.21%
(-1.39%p)

90.64%
(-0.47%p)

BNN 1-bit (1, -1) 1-bit (1, -1) 77.13%
(-8.47%p)

88.89%
(-2.22%p)

36

5/25/2019

19

Computing in Analog

Mixed-signal implementation of BNN

X. Sun et al., “XNOR-RRAM: A Scalable and Parallel Resistive Synaptic Architecture for Binary Neural

Networks,” DATE 2018.

37

Computing in Analog

BNN (Binarized Neural Network)

 MAC operations in analog

+…

W1

W2

Wj

x1

x2

xj

sign(u) +1 or 0X

+1 or 0 (not -1)

1

bias (8~32 bits)

BN

Multiplication & addition
(8~32 bits)

+1 or -1

38

5/25/2019

20

Computing in Analog

Binarized Spiking Neural Network (BSNN)

Network W Act CIFAR-10
ACC

(4 conv, 2 fc)

CIFAR-10
ACC

(6 conv, 3 fc)

DNN
(baseline)

Float32 Float32 85.60% 91.11%

BWN 1-bit (1, -1) Float32 84.21%
(-1.39%p)

90.64%
(-0.47%p)

BNN 1-bit (1, -1) 1-bit (1, -1) 77.13%
(-8.47%p)

88.89%
(-2.22%p)

SNN Float32 1-bit (1, 0) 78.73%
(-6.87%p)

88.01%
(-3.1%p)

BSNN 1-bit (1, -1) 1-bit (1, 0) 77.25%
(-8.35%p)

87.85%
(-3.26%p)

39

Computing in Analog

ReRAM-based implementation of BNN

 27x32 binary weights + 5x32 biases in a tile

 Array of tiles

40

5/25/2019

21

Computing in Analog

Comparison

Implementation
JSSC '17

ASP-DAC '1
7

ISLPED '17 DATE '18 ISSCC '18 Ours

Network CNN CNN CNN MVM CNN MLP

Parameters 0.26M 1.26M 14.03M 0.07M 1.88M 0.53M

Technology 65nm 45nm 40nm 65nm 28nm 32nm

Latency - - 1.6ms* 13.7ns 4.2ms 2.1ns

Area (mm2) 3.61 0.06 1.02 0.05 5.76 0.15

Power (mW) - - 6.3 67.9* 0.9 519.6

Energy (nJ) 79.72 13550 9815* 0.93* 3790 1.09

Energy efficiency
(TOPS/W)

0.048 0.962* 126 141 532 970

* Data calculated based on the numbers in the paper

How good is ~1 POPS/W?

 Human brain

• Power consumption: ~10W

• Number of synapses: ~1015

• Firing rate of one synapse: ~10 spikes/sec

• Max. power efficiency: 1015 × 10 / 10 = 1 POPS/W

41

Conclusion

For an efficient neural processing

 Network reduction

 Zero skipping

 Low-precision computing

 Computing in analog

 …

Many new areas to be explored

 Exploiting NVMs and in-memory-computing

 Exploiting information in timing

 Spiking neural network

 New training algorithm for efficiency

 …

42

